Probabilistic and Possibilistic Networks and How To Learn Them from Data

نویسندگان

  • Christian Borgelt
  • Rudolf Kruse
چکیده

In this paper we explain in a tutorial manner the technique of reasoning in probabilistic and possibilistic network structures, which is based on the idea to decompose a multi-dimensional probability or possibility distribution and to draw inferences using only the parts of the decomposition. Since constructing probabilistic and possibilistic networks by hand can be tedious and time-consuming, we also discuss how to learn probabilistic and possibilistic networks from a data, i.e. how to determine from a database of sample cases an appropriate decomposition of the underlying probability or possibility distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Possibilistic Networks with a Global Evaluation Method

Inference networks, probabilistic as well as possibilistic, are popular techniques to make reasoning in multi-dimensional domains feasible. Since constructing them by hand can be tedious and time consuming, a large part of recent research has been devoted to learning inference networks from data. Most of the proposed methods are based on local, i.e. single hyperedge evaluation. In this paper we...

متن کامل

A Naive Bayes Style Possibilistic Classifier

Naive Bayes classifiers can be seen as special probabilistic networks with a star-like structure. They can easily be induced from a dataset of sample cases. However, as most probabilistic approaches, they run into problems, if imprecise (i.e, set-valued) information in the data to learn from has to be taken into account. An approach to handle uncertain as well imprecise information, which recen...

متن کامل

A Naive Bayes Style

Naive Bayes classiiers can be seen as special probabilistic networks with a star-like structure. They can easily be induced from a dataset of sample cases. However, as most probabilistic approaches, they run into problems, if imprecise (i.e, set-valued) information in the data to learn from has to be taken into account. An approach to handle uncertain as well imprecise information, which recent...

متن کامل

Learning possibilistic graphical models from data

Graphical models—especially probabilistic networks like Bayes networks and Markov networks—are very popular to make reasoning in high-dimensional domains feasible. Since constructing them manually can be tedious and time consuming, a large part of recent research has been devoted to learning them from data. However, if the dataset to learn from contains imprecise information in the form of sets...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007